Computational intelligence with applications to general insurance: a review
Pietro Parodi
Annals of Actuarial Science, 2012, vol. 6, issue 2, 307-343
Abstract:
This paper argues that most of the problems that actuaries have to deal with in the context of non-life insurance can be usefully cast in the framework of computational intelligence (a.k.a. artificial intelligence), the discipline that studies the design of agents which exhibit intelligent behaviour. Finding an adequate framework for actuarial problems has more than a simply theoretical interest: it also allows a knowledge transfer from the computational intelligence discipline to general insurance, wherever techniques have been developed for problems which are common to both contexts. This has already happened in the past (neural networks, clustering, data mining have all found applications to general insurance) but not systematically, with the result that many useful computational intelligence techniques such as sparsity-based regularisation schemes (a technique for feature selection) are virtually unknown to actuaries. In this first of two papers, we will explore the role of statistical learning in actuarial modelling. We will show that risk costing, which is at the core of pricing, reserving and capital modelling, can be described as a supervised learning problem. Many activities involved in exploratory analysis, such as data mining or feature construction, can be described as unsupervised learning. A comparison of different computational intelligence methods will be carried out, and practical insurance applications (rating factor selection, IBNER analysis) will also be presented.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:anacsi:v:6:y:2012:i:02:p:307-343_00
Access Statistics for this article
More articles in Annals of Actuarial Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().