Some Transient Results on the M/SM/1 Special Semi-Markov Model in Risk and Queueing Theories
Jacques Janssen
ASTIN Bulletin, 1980, vol. 11, issue 1, 41-51
Abstract:
We consider a usual situation in risk theory for which the arrival process is a Poisson process and the claim process a positive (J — X) process inducing a semi-Markov process. The equivalent in queueing theory is the M/SM/1 model introduced for the first time by Neuts (1966).For both models, we give an explicit expression of the probability of non-ruin on [o, t] starting with u as initial reserve and of the waiting time distribution of the last customer arrived before t. “Explicit expression” means in terms of the matrix of the aggregate claims distributions.
Date: 1980
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:11:y:1980:i:01:p:41-51_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().