EconPapers    
Economics at your fingertips  
 

Survival Probabilities Based on Pareto Claim Distributions

Hilary L. Seal

ASTIN Bulletin, 1980, vol. 11, issue 1, 61-71

Abstract: It is commonly thought that the characteristic function (Fourier transform) of the Pareto distribution has no known functional form (e.g. Seal, 1978, pp. 14, 40, 57). This is quite untrue. Nevertheless the characteristic function of the Pareto density is conspicuously absent from standard reference works even when the Pareto distribution itself receives substantial comment (e.g. Haight, 1961; Johnson and Kotz, 1970, Ch. 19; Patel, Kapadia and Owen, 1976, § 1. 5).The Pareto density may be writtenwith distribution functionmean = p/(v − 1) and variance = b2v(v − 1)2(v−2). These are infinite when v≤1 and v≤2, respectively. Its Laplace transform (s= c + iu)where E is the generalized exponential integral (Pagurova, 1961) and can be written in terms of incomplete gamma or confluent hypergeometric functions (Slater, 1960, Sec. 5.6). When s = − it β(s) becomes the characteristic function (see Appendix I).As Benktander (1970) tells us, the Pareto distribution has been particularly successful at representing the distribution of the larger claim amounts. In earlier years it was employed to represent the distribution of life insurance sums assured but more recently it has been used for the claim distributions of fire and automobile insurance. Table 1 provides the v-values we have been able to locate. Note that the variance of the distribution is infinite when v≤2 and if it were not for the anomalous v-values of Andersson (1971) we would have ventured the opinion that modern claim data encourage the assumption that v>2. In our numerical work we have used v = 2.7 and smaller values might change some of the computer rules we have proposed in Appendix II.

Date: 1980
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:11:y:1980:i:01:p:61-71_00

Access Statistics for this article

More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:astinb:v:11:y:1980:i:01:p:61-71_00