Recursions for Compound Distributions*
H. H. Panjer and
G. E. Willmot
ASTIN Bulletin, 1982, vol. 13, issue 1, 1-12
Abstract:
Various methods for developing recursive formulae for compound distributions have been reported recently by Panjer (1980, including discussion), Panjer (1981), Sundt and Jewell (1981) and Gerber (1982) for a class of claim frequency distributions and arbitrary claim amount distributions. The recursions are particularly useful for computational purposes since the number of calculations required to obtain the distribution function of total claims and related values such as net stop-loss premiums may be greatly reduced when compared with the usual method based on convolutions.In this paper a broader class of claims frequency distributions is considered and methods for developing recursions for the corresponding compound distributions are examined. The methods make use of the Laplace transform of the density of the compound distribution.Consider the class of claim frequency distributions which has the property that successive probabilities may be written as the ratio of two polynomials. For convenience we write the polynomials in terms of descending factorial powers. For obvious reasons, only distributions on the non-negative integers are considered.
Date: 1982
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:13:y:1982:i:01:p:1-12_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().