Note on the Application of Compound Poisson Processes to Sickness and Accident Statistics
Carl Philipson
ASTIN Bulletin, 1960, vol. 1, issue 4, 224-237
Abstract:
In order to fix our ideas an illustration of the theory for (a) a general elementary random process, (b) a compound Poisson process and (c) a Polya process shall be given here below following Ove Lundberg (On Random Processes and Their Application to Accident and Sickness Statistics, Inaug. Diss., Uppsala 1940).Let the continuous parameter t* be measured on an absolute scale from a given point of zero and consider the random function N* (t*) which takes only non-negative and integer values with N* (o) = o. This function constitutes a general elementary random process for which the conditional probability that N* (t*) = n relative to the hypothesis that shall be denoted , while the absolute probability that N* (t) = n i.e. shall be written If quantities of lower order than dt* are neglected, we may write for the conditional probability that N* (t* + dt*) = n + 1 relative to thehyp othesis that N* (t*) = n, i.e. is the intensity function of the process which is assumed to be a continuous function of t* (the condition of existence for the integral over the given interval of t* for every n > m may be substituted for the condition of continuity). The expectations for an arbitrary but fix value of t* of N* (t*) and p* (t*) will be denoted by the corresponding symbol with a bar so thatIf is uniformly bounded for all n in the interval o ≤ t*
Date: 1960
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:1:y:1960:i:04:p:224-237_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().