Bayes and Empirical Bayes Estimation for the Chain Ladder Model
R.J. Verrall
ASTIN Bulletin, 1990, vol. 20, issue 2, 217-243
Abstract:
The subject of predicting outstanding claims on a porfolio of general insurance policies is approached via the theory of hierarchical Bayesian linear models. This is particularly appropriate since the chain ladder technique can be expressed in the form of a linear model. The statistical methods which are applied allow the practitioner to use different modelling assumptions from those implied by a classical formulation, and to arrive at forecasts which have a greater degree of inherent stability. The results can also be used for other linear models. By using a statistical structure, a sound approach to the chain ladder technique can be derived. The Bayesian results allow the input of collateral information in a formal manner. Empirical Bayes results are derived which can be interpreted as credibility estimates. The statistical assumptions which are made in the modelling procedure are clearly set out and can be tested by the practitioner. The results based on the statistical theory form one part of the reserving procedure, and should be followed by expert interpretation and analysis. An illustration of the use of Bayesian and empirical Bayes estimation methods is given.
Date: 1990
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:20:y:1990:i:02:p:217-243_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().