On the Compound Generalized Poisson Distributions
R.S. Ambagaspitiya and
N. Balakrishnan
ASTIN Bulletin, 1994, vol. 24, issue 2, 255-263
Abstract:
Goovaerts and Kaas (1991) present a recursive scheme, involving Panjer's recursion, to compute the compound generalized Poisson distribution (CGPD). In the present paper, we study the CGPD in detail. First, we express the generating functions in terms of Lambert's W function. An integral equation is derived for the pdf of CGPD, when the claim severities are absolutely continuous, from the basic principles. Also we derive the asymptotic formula for CGPD when the distribution of claim severity satisfies certain conditions. Then we present a recursive formula somewhat different and easier to implement than the recursive scheme of Goovaerts and Kaas (1991), when the distribution of claim severity follows an arithmetic distribution, which can be used to evaluate the CGPD. We illustrate the usage of this formula with a numerical example.
Date: 1994
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:24:y:1994:i:02:p:255-263_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().