EconPapers    
Economics at your fingertips  
 

The Present Value of a Series of Cashflows: Convergence in a Random Environment

Andrew J. G. Cairns

ASTIN Bulletin, 1995, vol. 25, issue 2, 81-94

Abstract: The present paper considers the present value, Z(t), of a series of cashflows up to some time t. More specifically, the cashflows and the interest rate process will often be stochastic and not necessarily independent of one another or through time. We discuss under what circumstances Z(t) will converge almost surely to some finite value as t→∞. This problem has previously been considered by Dufresne (1990) who provided a sufficient condition for almost sure convergence of Z(t) (the Root Test) and then proceeded to consider some specific examples of such processes. Here, we develop Dufresne's work and show that the sufficient condition for convergence can be proved to hold for quite a general class of model which includes the growing number of Office Models with stochastic cashflows.

Date: 1995
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:25:y:1995:i:02:p:81-94_00

Access Statistics for this article

More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:astinb:v:25:y:1995:i:02:p:81-94_00