Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory
Alexander J. McNeil
ASTIN Bulletin, 1997, vol. 27, issue 1, 117-137
Abstract:
Good estimates for the tails of loss severity distributions are essential for pricing or positioning high-excess loss layers in reinsurance. We describe parametric curve-fitting methods for modelling extreme historical losses. These methods revolve around the generalized Pareto distribution and are supported by extreme value theory. We summarize relevant theoretical results and provide an extensive example of their application to Danish data on large fire insurance losses.
Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (136)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:27:y:1997:i:01:p:117-137_01
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().