Credibility Using Semiparametric Models
Virginia R. Young
ASTIN Bulletin, 1997, vol. 27, issue 2, 273-285
Abstract:
To use Bayesian analysis to model insurance losses, one usually chooses a parametric conditional loss distribution for each risk and a parametric prior distribution to describe how the conditional distributions vary across the risks. A criticism of this method is that the prior distribution can be difficult to choose and the resulting model may not represent the loss data very well. In this paper, we apply techniques from nonparametric density estimation to estimate the prior. We use the estimated model to calculate the predictive mean of future claims given past claims. We illustrate our method with simulated data from a mixture of a lognormal conditional over a lognormal prior and find that the estimated predictive mean is more accurate than the linear Bühlmann credibility estimator, even when we use a conditional that is not lognormal.
Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:27:y:1997:i:02:p:273-285_01
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().