On the Analysis of the Truncated Generalized Poisson Distribution Using a Bayesian Method
David P.M. Scollnik
ASTIN Bulletin, 1998, vol. 28, issue 1, 135-152
Abstract:
The generalized Poisson distribution with parameters θ and λ was introduced by Consul and Jain (1973) and has recently found several instances of application in the actuarial literature. The most frequently used version of the distribution assumes that θ > 0 and 0 ≤ λ 1 (e.g., Johnson, Kotz, and Kemp, 1992, page 397). In these cases, even the definition of the probability mass function usually given in the literature is not properly normalized so that its values do not sum to unity. For this reason, it is common to truncate the support of the distribution and explicitly normalize the probability mass function. In this paper we discuss the estimation of the parameters of this truncated generalized Poisson distribution using a Bayesian method.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:28:y:1998:i:01:p:135-152_01
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().