EconPapers    
Economics at your fingertips  
 

On the Use of Equispaced Discrete Distributions

J.F. Walhin and J. Paris

ASTIN Bulletin, 1998, vol. 28, issue 2, 241-255

Abstract: The Kolmogorov distance is used to transform arithmetic severities into equispaced arithmetic severities in order to reduce the number of calculations when using algorithms like Panjer's formulae for compound distributions. An upper bound is given for the Kolmogorov distance between the true compound distribution and the transformed one. Advantages of the Kolmogorov distance and disadvantages of the total variation distance are discussed. When the bounds are too big, a Berry-Esseen result can be used. Then almost every case can be handled by the techniques described in this paper. Numerical examples show the interest of the methods.

Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:28:y:1998:i:02:p:241-255_01

Access Statistics for this article

More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:astinb:v:28:y:1998:i:02:p:241-255_01