Financial Data Analysis with Two Symmetric Distributions
Werner Hürlimann
ASTIN Bulletin, 2001, vol. 31, issue 1, 187-211
Abstract:
The normal inverted gamma mixture or generalized Student t and the symmetric double Weibull, as well as their logarithmic counterparts, are proposed for modeling some loss distributions in non-life insurance and daily index return distributions in financial markets. For three specific data sets, the overall goodness-offit from these models, as measured simultaneously by the negative log-likelihood, chi-square and minimum distance statistics, is found to be superior to that of various “good” competitive models including the log-normal, the Burr, and the symmetric α-stable distribution. Furthermore, the study justifies on a statistical basis different important models of financial returns like the model of Black-Scholes (1973), the log-Laplace model of Hürlimann (1995), the normal mixture by Praetz (1972), the symmetric α-stable model by Mandelbrot (1963) and Fama (1965), and the recent double Weibull as limiting geometric-multiplication stable scheme in Mittnik and Rachev (1993). As an application, the prediction of one-year index returns from daily index returns is discussed.
Date: 2001
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:31:y:2001:i:01:p:187-211_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().