Favorable Estimators for Fitting Pareto Models: A Study Using Goodness-of-fit Measures with Actual Data
Vytaras Brazauskas and
Robert Serfling
ASTIN Bulletin, 2003, vol. 33, issue 2, 365-381
Abstract:
Several recent papers treated robust and efficient estimation of tail index parameters for (equivalent) Pareto and truncated exponential models, for large and small samples. New robust estimators of “generalized median” (GM) and “trimmed mean” (T) type were introduced and shown to provide more favorable trade-offs between efficiency and robustness than several well-established estimators, including those corresponding to methods of maximum likelihood, quantiles, and percentile matching. Here we investigate performance of the above mentioned estimators on real data and establish — via the use of goodness-of-fit measures — that favorable theoretical properties of the GM and T type estimators translate into an excellent practical performance. Further, we arrive at guidelines for Pareto model diagnostics, testing, and selection of particular robust estimators in practice. Model fits provided by the estimators are ranked and compared on the basis of Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling statistics.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:33:y:2003:i:02:p:365-381_01
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().