Ruin Probabilities and Deficit for the Renewal Risk Model with Phase-type Interarrival Times
F. Avram and
M. Usábel
ASTIN Bulletin, 2004, vol. 34, issue 2, 315-332
Abstract:
This paper shows how the multivariate finite time ruin probability function, in a phase-type environment, inherits the phase-type structure and can be efficiently approximated with only one Laplace transform inversion. From a theoretical point of view, we also provide below a generalization of Thorin’s formula (1971) for the double Laplace transform of the finite time ruin probability, by considering also the deficit at ruin; the model is that of a Sparre Andersen (renewal) risk process with phase-type interarrival times. In the case when the claims distribution is of phase-type as well, we obtain also an alternative formula for the single Laplace transform in time (or “exponentially killed probability’’), in terms of the roots with positive real part of the Lundberg’s equations, which complements Asmussen’s representation (1992) in terms of the roots with negative real part.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:34:y:2004:i:02:p:315-332_01
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().