The Quantitative Modeling of Operational Risk: Between G-and-H and EVT
Matthias Degen,
Paul Embrechts and
Dominik D. Lambrigger
ASTIN Bulletin, 2007, vol. 37, issue 2, 265-291
Abstract:
Operational risk has become an important risk component in the banking and insurance world. The availability of (few) reasonable data sets has given some authors the opportunity to analyze operational risk data and to propose different models for quantification. As proposed in Dutta and Perry [12], the parametric g-and-h distribution has recently emerged as an interesting candidate. In our paper, we discuss some fundamental properties of the g-and-h distribution and their link to extreme value theory (EVT). We show that for the g-and-h distribution, convergence of the excess distribution to the generalized Pareto distribution (GPD) is extremely slow and therefore quantile estimation using EVT may lead to inaccurate results if data are well modeled by a g-and-h distribution. We further discuss the subadditivity property of Value-at-Risk (VaR) for g-and-h random variables and show that for reasonable g and h parameter values, superadditivity may appear when estimating high quantiles. Finally, we look at the g-and-h distribution in the one-claim-causes-ruin paradigm.
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (36)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:37:y:2007:i:02:p:265-291_01
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().