Posterior Regret Γ-Minimax Estimation of Insurance Premium in Collective Risk Model
Agata Boratyńska
ASTIN Bulletin, 2008, vol. 38, issue 1, 277-291
Abstract:
The collective risk model for the insurance claims is considered. The objective is to estimate a premium which is defined as a functional H specified up to an unknown parameter θ (the expected number of claims). Four principles of calculating a premium are applied. The Bayesian methodology, which combines the prior knowledge about a parameter θ with the knowledge in the form of a random sample is adopted. Two loss functions (the square-error loss function and the asymmetric loss function LINEX) are considered. Some uncertainty about a prior is assumed by introducing classes of priors. Considering one of the concepts of robust procedures the posterior regret Γ-minimax premiums are calculated, as an optimal robust premiums. A numerical example is presented.
Date: 2008
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:38:y:2008:i:01:p:277-291_01
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().