Quasi Risk-Neutral Pricing in Insurance
Harry Niederau and
Peter Zweifel
ASTIN Bulletin, 2009, vol. 39, issue 1, 317-337
Abstract:
This contribution shows that for certain classes of insurance risks, pricing can be based on expected values under a probability measure ℙ* amounting to quasi risk-neutral pricing. This probability measure is unique and optimal in the sense of minimizing the relative entropy with respect to the actuarial probability measure ℙ, which is a common approach in the case of incomplete markets. After expounding the key elements of this theory, an application to a set of industrial property risks is developed, assuming that the severity of losses can be modeled by “Swiss Re Exposure Curves”, as discussed by Bernegger (1997). These curves belong to a parametric family of distribution functions commonly used by pricing actuaries. The quasi risk-neutral pricing approach not only yields risk exposure specific premiums but also Risk Adjusted Capital (RAC) values on the very same level of granularity. By way of contrast, the conventional determination of RAC is typically considered on a portfolio level only.
Date: 2009
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:39:y:2009:i:01:p:317-337_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().