Full Credibility with Generalized Linear and Mixed Models
José Garrido and
Jun Zhou
ASTIN Bulletin, 2009, vol. 39, issue 1, 61-80
Abstract:
Generalized linear models (GLMs) are gaining popularity as a statistical analysis method for insurance data. For segmented portfolios, as in car insurance, the question of credibility arises naturally; how many observations are needed in a risk class before the GLM estimators can be considered credible? In this paper we study the limited fluctuations credibility of the GLM estimators as well as in the extended case of generalized linear mixed model (GLMMs). We show how credibility depends on the sample size, the distribution of covariates and the link function. This provides a mechanism to obtain confidence intervals for the GLM and GLMM estimators.
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:39:y:2009:i:01:p:61-80_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().