Fast Sensitivity Computations for Monte Carlo Valuation of Pension Funds
Mark Joshi and
David Pitt
ASTIN Bulletin, 2010, vol. 40, issue 2, 655-667
Abstract:
Sensitivity analysis, or so-called ‘stress-testing’, has long been part of the actuarial contribution to pricing, reserving and management of capital levels in both life and non-life assurance. Recent developments in the area of derivatives pricing have seen the application of adjoint methods to the calculation of option price sensitivities including the well-known ‘Greeks’ or partial derivatives of option prices with respect to model parameters. These methods have been the foundation for efficient and simple calculations of a vast number of sensitivities to model parameters in financial mathematics. This methodology has yet to be applied to actuarial problems in insurance or in pensions. In this paper we consider a model for a defined benefit pension scheme and use adjoint methods to illustrate the sensitivity of fund valuation results to key inputs such as mortality rates, interest rates and levels of salary rate inflation. The method of adjoints is illustrated in the paper and numerical results are presented. Efficient calculation of the sensitivity of key valuation results to model inputs is useful information for practising actuaries as it provides guidance as to the relative ultimate importance of various judgments made in the formation of a liability valuation basis.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:40:y:2010:i:02:p:655-667_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().