No-Good-Deal, Local Mean-Variance and Ambiguity Risk Pricing and Hedging for an Insurance Payment Process
Łukasz Delong
ASTIN Bulletin, 2012, vol. 42, issue 1, 203-232
Abstract:
We study pricing and hedging for an insurance payment process. We investigate a Black-Scholes financial model with stochastic coefficients and a payment process with death, survival and annuity claims driven by a point process with a stochastic intensity. The dependence of the claims and the intensity on the financial market and on an additional background noise (correlated index, longevity risk) is allowed. We establish a general modeling framework for no-good-deal, local mean-variance and ambiguity risk pricing and hedging. We show that these three valuation approaches are equivalent under appropriate formulations. We characterize the price and the hedging strategy as a solution to a backward stochastic differential equation. The results could be applied to pricing and hedging of variable annuities, surrender options under an irrational lapse behavior and mortality derivatives.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:42:y:2012:i:01:p:203-232_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().