Estimating Copulas for Insurance from Scarce Observations, Expert Opinion and Prior Information: A Bayesian Approach
Philipp Arbenz and
Davide Canestraro
ASTIN Bulletin, 2012, vol. 42, issue 1, 271-290
Abstract:
A prudent assessment of dependence is crucial in many stochastic models for insurance risks. Copulas have become popular to model such dependencies. However, estimation procedures for copulas often lead to large parameter uncertainty when observations are scarce. In this paper, we propose a Bayesian method which combines prior information (e.g. from regulators), observations and expert opinion in order to estimate copula parameters and determine the estimation uncertainty. The combination of different sources of information can significantly reduce the parameter uncertainty compared to the use of only one source. The model can also account for uncertainty in the marginal distributions. Furthermore, we describe the methodology for obtaining expert opinion and explain involved psychological effects and popular fallacies. We exemplify the approach in a case study.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:42:y:2012:i:01:p:271-290_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().