EconPapers    
Economics at your fingertips  
 

DISTRIBUTION OF THE TIME TO RUIN IN SOME SPARRE ANDERSEN RISK MODELS

Tianxiang Shi and David Landriault

ASTIN Bulletin, 2013, vol. 43, issue 1, 39-59

Abstract: The finite-time ruin problem, which implicitly involves the inversion of the Laplace transform of the time to ruin, has been a long-standing research problem in risk theory. Existing results in the Sparre Andersen risk models are mainly based on an exponential assumption either on the interclaim times or on the claim sizes. In this paper, we utilize the multivariate version of Lagrange expansion theorem to obtain a series expansion for the density of the time to ruin under a more general distribution assumption, namely the combination of n exponentials. A remark is further made to emphasize that this technique can also be applied to other areas of applied probability. For instance, the proposed methodology can be used to obtain the distribution of some first passage times for particular stochastic processes. As an illustration, the duration of a busy period in a queueing risk model will be examined.

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:43:y:2013:i:01:p:39-59_00

Access Statistics for this article

More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:astinb:v:43:y:2013:i:01:p:39-59_00