AN ITERATIVITY CONDITION FOR THE MEAN-VALUE PRINCIPLE UNDER CUMULATIVE PROSPECT THEORY
Marek Kaluszka and
Michał Krzeszowiec
ASTIN Bulletin, 2013, vol. 43, issue 1, 61-71
Abstract:
In this paper, we present the full characterization of the iterativity condition for the mean-value principle under the cumulative prospect theory. It turns out that the premium principle is iterative for exactly six pairs of probability distortion functions. Some of the corresponding premium principles are the classical mean-value principle, essential infimum or essential supremum of the random loss. Moreover, from the proof of the main theorem of this paper, it follows that the iterativity of the mean-value principle is equivalent to the iterativity of the generalized Choquet integral.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:43:y:2013:i:01:p:61-71_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().