MODELING DEPENDENCE BETWEEN LOSS TRIANGLES WITH HIERARCHICAL ARCHIMEDEAN COPULAS
Anas Abdallah,
Jean-Philippe Boucher and
Hélène Cossette
ASTIN Bulletin, 2015, vol. 45, issue 3, 577-599
Abstract:
One of the most critical problems in property/casualty insurance is to determine an appropriate reserve for incurred but unpaid losses. These provisions generally comprise most of the liabilities of a non-life insurance company. The global provisions are often determined under an assumption of independence between the lines of business. Recently, Shi and Frees (2011) proposed to put dependence between lines of business with a copula that captures dependence between two cells of two different runoff triangles. In this paper, we propose to generalize this model in two steps. First, by using an idea proposed by Barnett and Zehnwirth (1998), we will suppose a dependence between all the observations that belong to the same calendar year (CY) for each line of business. Thereafter, we will then suppose another dependence structure that links the CYs of different lines of business. This model is done by using hierarchical Archimedean copulas. We show that the model provides more flexibility than existing models, and offers a better, more realistic and more intuitive interpretation of the dependence between the lines of business. For illustration, the model is applied to a dataset from a major US property-casualty insurer, where a bootstrap method is proposed to estimate the distribution of the reserve.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:45:y:2015:i:03:p:577-599_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().