EconPapers    
Economics at your fingertips  
 

FITTING MIXTURES OF ERLANGS TO CENSORED AND TRUNCATED DATA USING THE EM ALGORITHM

Roel Verbelen, Lan Gong, Katrien Antonio, Andrei Badescu and Sheldon Lin

ASTIN Bulletin, 2015, vol. 45, issue 3, 729-758

Abstract: We discuss how to fit mixtures of Erlangs to censored and truncated data by iteratively using the EM algorithm. Mixtures of Erlangs form a very versatile, yet analytically tractable, class of distributions making them suitable for loss modeling purposes. The effectiveness of the proposed algorithm is demonstrated on simulated data as well as real data sets.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:45:y:2015:i:03:p:729-758_00

Access Statistics for this article

More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:astinb:v:45:y:2015:i:03:p:729-758_00