CHAIN LADDER AND ERROR PROPAGATION
Ancus Röhr
ASTIN Bulletin, 2016, vol. 46, issue 2, 293-330
Abstract:
We show how estimators for the chain ladder prediction error in Mack's (1993) distribution-free stochastic model can be derived using the error propagation formula. Our method allows for the treatment of the general case of the prediction error of the loss development result between two arbitrary future horizons. In the well-known special cases considered previously by Mack (1993) and Merz and Wüthrich (2008), our estimators coincide with theirs. However, the algebraic form in which we cast them is new, considerably more compact and more intuitive to understand. For example, in the classical case treated by Mack (1993), we show that the mean squared prediction error divided by the squared estimated ultimate loss can be written as ∑jû2j, where ûj measures the (relative) uncertainty around the jth development factor and the proportion of the estimated ultimate loss that it affects. The error propagation method also provides a natural split into process error and parameter error. Our proofs identify and exploit symmetries of “chain ladder processes” in a novel way. For the sake of wider practical applicability of the formulae derived, we allow for incomplete historical data and the exclusion of outliers in the triangles.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:46:y:2016:i:02:p:293-330_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().