EconPapers    
Economics at your fingertips  
 

COLLECTIVE RISK MODELS WITH DEPENDENCE UNCERTAINTY

Haiyan Liu and Ruodu Wang

ASTIN Bulletin, 2017, vol. 47, issue 2, 361-389

Abstract: We bring the recently developed framework of dependence uncertainty into collective risk models, one of the most classic models in actuarial science. We study the worst-case values of the Value-at-Risk (VaR) and the Expected Shortfall (ES) of the aggregate loss in collective risk models, under two settings of dependence uncertainty: (i) the counting random variable (claim frequency) and the individual losses (claim sizes) are independent, and the dependence of the individual losses is unknown; (ii) the dependence of the counting random variable and the individual losses is unknown. Analytical results for the worst-case values of ES are obtained. For the loss from a large portfolio of insurance policies, an asymptotic equivalence of VaR and ES is established. Our results can be used to provide approximations for VaR and ES in collective risk models with unknown dependence. Approximation errors are obtained in both cases.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:47:y:2017:i:02:p:361-389_00

Access Statistics for this article

More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:astinb:v:47:y:2017:i:02:p:361-389_00