BAYESIAN ANALYSIS OF BIG DATA IN INSURANCE PREDICTIVE MODELING USING DISTRIBUTED COMPUTING
Yanwei Zhang
ASTIN Bulletin, 2017, vol. 47, issue 3, 943-961
Abstract:
While Bayesian methods have attracted considerable interest in actuarial science, they are yet to be embraced in large-scaled insurance predictive modeling applications, due to inefficiencies of Bayesian estimation procedures. The paper presents an efficient method that parallelizes Bayesian computation using distributed computing on Apache Spark across a cluster of computers. The distributed algorithm dramatically boosts the speed of Bayesian computation and expands the scope of applicability of Bayesian methods in insurance modeling. The empirical analysis applies a Bayesian hierarchical Tweedie model to a big data of 13 million insurance claim records. The distributed algorithm achieves as much as 65 times performance gain over the non-parallel method in this application. The analysis demonstrates that Bayesian methods can be of great value to large-scaled insurance predictive modeling.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:47:y:2017:i:03:p:943-961_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().