EconPapers    
Economics at your fingertips  
 

ROBUST AND EFFICIENT FITTING OF SEVERITY MODELS AND THE METHOD OF WINSORIZED MOMENTS

Qian Zhao, Vytaras Brazauskas and Jugal Ghorai

ASTIN Bulletin, 2018, vol. 48, issue 1, 275-309

Abstract: Continuous parametric distributions are useful tools for modeling and pricing insurance risks, measuring income inequality in economics, investigating reliability of engineering systems, and in many other areas of application. In this paper, we propose and develop a new method for estimation of their parameters—the method of Winsorized moments (MWM)—which is conceptually similar to the method of trimmed moments (MTM) and thus is robust and computationally efficient. Both approaches yield explicit formulas of parameter estimators for log-location-scale families and their variants, which are commonly used to model claim severity. Large-sample properties of the new estimators are provided and corroborated through simulations. Their performance is also compared to that of MTM and the maximum likelihood estimators (MLE). In addition, the effect of model choice and parameter estimation method on risk pricing is illustrated using actual data that represent hurricane damages in the United States from 1925 to 1995. In particular, the estimated pure premiums for an insurance layer are computed when the lognormal and log-logistic models are fitted to the data using the MWM, MTM and MLE methods.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:48:y:2018:i:01:p:275-309_00

Access Statistics for this article

More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:astinb:v:48:y:2018:i:01:p:275-309_00