AN EXTREME-VALUE THEORY APPROXIMATION SCHEME IN REINSURANCE AND INSURANCE-LINKED SECURITIES
Anonymous
ASTIN Bulletin, 2018, vol. 48, issue 3, 1157-1173
Abstract:
We establish a “top-down” approximation scheme to approximate loss distributions of reinsurance products and Insurance-Linked Securities based on three input parameters, namely the Attachment Probability, Expected Loss and Exhaustion Probability. Our method is rigorously derived by utilizing a classical result from Extreme-Value Theory, the Pickands–Balkema–de Haan theorem. The robustness of the scheme is demonstrated by proving sharp error-bounds for the approximated curves with respect to the supremum and L2 norms. The practical implications of our findings are examined by applying it to Industry Loss Warranties: the method performs very accurately for each transaction. Our approach can be used in a variety of applications such as vendor model blending, portfolio optimization and premium calculation.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:48:y:2018:i:03:p:1157-1173_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().