VALUATION OF CONTINGENT GUARANTEES USING LEAST-SQUARES MONTE CARLO
T. Bienek and
M. Scherer
ASTIN Bulletin, 2019, vol. 49, issue 1, 31-56
Abstract:
We consider the problem of pricing modern guarantee concepts in unit-linked life insurance, where the guaranteed amount grows contingent on the performance of an investment fund that acts simultaneously as the underlying security and the replicating portfolio. Using the Martingale Method, this nonstandard pricing problem can be transformed into a fixed-point problem, whose solution requires the evaluation of conditional expectations of highly path-dependent payoffs. By adapting the least-squares Monte Carlo method for American option pricing problems, we develop a new numerical approach to approximate the value of contingent guarantees and prove its convergence. Our valuation procedure can be applied to large-scale pricing problems, for which existing methods are infeasible, and leads to significant improvements in performance.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:49:y:2019:i:01:p:31-56_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().