DYNAMIC PRINCIPAL COMPONENT REGRESSION: APPLICATION TO AGE-SPECIFIC MORTALITY FORECASTING
Han Lin Shang
ASTIN Bulletin, 2019, vol. 49, issue 3, 619-645
Abstract:
In areas of application, including actuarial science and demography, it is increasingly common to consider a time series of curves; an example of this is age-specific mortality rates observed over a period of years. Given that age can be treated as a discrete or continuous variable, a dimension reduction technique, such as principal component analysis (PCA), is often implemented. However, in the presence of moderate-to-strong temporal dependence, static PCA commonly used for analyzing independent and identically distributed data may not be adequate. As an alternative, we consider a dynamic principal component approach to model temporal dependence in a time series of curves. Inspired by Brillinger’s (1974, Time Series: Data Analysis and Theory. New York: Holt, Rinehart and Winston) theory of dynamic principal components, we introduce a dynamic PCA, which is based on eigen decomposition of estimated long-run covariance. Through a series of empirical applications, we demonstrate the potential improvement of 1-year-ahead point and interval forecast accuracies that the dynamic principal component regression entails when compared with the static counterpart.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:49:y:2019:i:03:p:619-645_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().