OPTIMAL ASSET ALLOCATION FOR DC PENSION DECUMULATION WITH A VARIABLE SPENDING RULE
Peter A. Forsyth,
Kenneth R. Vetzal and
Graham Westmacott
ASTIN Bulletin, 2020, vol. 50, issue 2, 419-447
Abstract:
We determine the optimal asset allocation to bonds and stocks using an annually recalculated virtual annuity (ARVA) spending rule for DC pension plan decumulation. Our objective function minimizes downside withdrawal variability for a given fixed value of total expected withdrawals. The optimal asset allocation is found using optimal stochastic control methods. We formulate the strategy as a solution to a Hamilton–Jacobi–Bellman (HJB) Partial Integro Differential Equation (PIDE). We impose realistic constraints on the controls (no-shorting, no-leverage, discrete rebalancing) and solve the HJB PIDEs numerically. Compared to a fixed-weight strategy which has the same expected total withdrawals, the optimal strategy has a much smaller average allocation to stocks and tends to de-risk rapidly over time. This conclusion holds in the case of a parametric model based on historical data and also in a bootstrapped market based on the historical data.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:50:y:2020:i:2:p:419-447_4
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().