EconPapers    
Economics at your fingertips  
 

PREDICTIVE CLAIM SCORES FOR DYNAMIC MULTI-PRODUCT RISK CLASSIFICATION IN INSURANCE

Robert Matthijs Verschuren

ASTIN Bulletin, 2021, vol. 51, issue 1, 1-25

Abstract: It has become standard practice in the non-life insurance industry to employ generalized linear models (GLMs) for insurance pricing. However, these GLMs traditionally work only with a priori characteristics of policyholders, while nowadays we increasingly have a posteriori information of individual customers available across multiple product categories. In this paper, we therefore develop a framework to capture this a posteriori information over several product lines using a dynamic claim score. More specifically, we extend the bonus-malus-panel model of Boucher and Inoussa (2014) and Boucher and Pigeon (2018) to include claim scores from other product categories and to allow for nonlinear effects of these scores. The application of the proposed multi-product framework to a Dutch property and casualty insurance portfolio shows that customers’ individual claims experience can have a significant impact on the risk classification. Moreover, it indicates that considerably more profits can be gained by accounting for their multi-product claims experience.

Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:51:y:2021:i:1:p:1-25_1

Access Statistics for this article

More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:astinb:v:51:y:2021:i:1:p:1-25_1