UNIVERSALLY MARKETABLE INSURANCE UNDER MULTIVARIATE MIXTURES
Ambrose Lo,
Qihe Tang and
Zhaofeng Tang
ASTIN Bulletin, 2021, vol. 51, issue 1, 221-243
Abstract:
The study of desirable structural properties that define a marketable insurance contract has been a recurring theme in insurance economic theory and practice. In this article, we develop probabilistic and structural characterizations for insurance indemnities that are universally marketable in the sense that they appeal to all policyholders whose risk preferences respect the convex order. We begin with the univariate case where a given policyholder faces a single risk, then extend our results to the case where multiple risks possessing a certain dependence structure coexist. The non-decreasing and 1-Lipschitz condition, in various forms, is shown to be intimately related to the notion of universal marketability. As the highlight of this article, we propose a multivariate mixture model which not only accommodates a host of dependence structures commonly encountered in practice but is also flexible enough to house a rich class of marketable indemnity schedules.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:51:y:2021:i:1:p:221-243_8
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().