EconPapers    
Economics at your fingertips  
 

ON THE $r\mathcal{B}$ELL FAMILY OF DISTRIBUTIONS WITH ACTUARIAL APPLICATIONS

Deepesh Bhati and Enrique Calderín-Ojeda

ASTIN Bulletin, 2022, vol. 52, issue 1, 185-210

Abstract: In this paper, a new three-parameter discrete family of distributions, the $r{\mathcal B}ell$ family, is introduced. The family is based on series expansion of the r-Bell polynomials. The proposed model generalises the classical Poisson and the recently proposed Bell and Bell–Touchard distributions. It exhibits interesting stochastic properties. Its probabilities can be computed by a recursive formula that allows us to calculate the probability function of the amount of aggregate claims in the collective risk model in terms of an integral equation. Univariate and bivariate regression models are presented. The former regression model is used to explain the number of out-of-use claims in an automobile insurance portfolio, by showing a good out-of-sample performance. The latter is used to describe the number of out-of-use and parking claims jointly. This family provides an alternative to other traditionally used distributions to describe count data such as the negative binomial and Poisson-inverse Gaussian models.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:52:y:2022:i:1:p:185-210_7

Access Statistics for this article

More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:astinb:v:52:y:2022:i:1:p:185-210_7