POINT AND INTERVAL FORECASTS OF DEATH RATES USING NEURAL NETWORKS
Simon Schnürch and
Ralf Korn
ASTIN Bulletin, 2022, vol. 52, issue 1, 333-360
Abstract:
The Lee–Carter model has become a benchmark in stochastic mortality modeling. However, its forecasting performance can be significantly improved upon by modern machine learning techniques. We propose a convolutional neural network (NN) architecture for mortality rate forecasting, empirically compare this model as well as other NN models to the Lee–Carter model and find that lower forecast errors are achievable for many countries in the Human Mortality Database. We provide details on the errors and forecasts of our model to make it more understandable and, thus, more trustworthy. As NN by default only yield point estimates, previous works applying them to mortality modeling have not investigated prediction uncertainty. We address this gap in the literature by implementing a bootstrapping-based technique and demonstrate that it yields highly reliable prediction intervals for our NN model.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:52:y:2022:i:1:p:333-360_11
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().