Tail index partition-based rules extraction with application to tornado damage insurance
Arthur Maillart and
Christian Y. Robert
ASTIN Bulletin, 2023, vol. 53, issue 2, 258-284
Abstract:
The tail index is an important parameter that measures how extreme events occur. In many practical cases, this tail index depends on covariates. In this paper,we assume that it takes a finite number of values over a partition of the covariate space. This article proposes a tail index partition-based rules extraction method that is able to construct estimates of the partition subsets and estimates of the tail index values. The method combines two steps: first an additive tree ensemble based on the Gamma deviance is fitted, and second a hierarchical clustering with spatial constraints is used to estimate the subsets of the partition. We also propose a global tree surrogate model to approximate the partition-based rules while providing an explainable model from the initial covariates. Our procedure is illustrated on simulated data. A real case study on wind property damages caused by tornadoes is finally presented.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:53:y:2023:i:2:p:258-284_4
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().