Risk management with local least squares Monte Carlo
Donatien Hainaut and
Adnane Akbaraly
ASTIN Bulletin, 2023, vol. 53, issue 3, 489-514
Abstract:
The least squares Monte Carlo method has become a standard approach in the insurance and financial industries for evaluating a company’s exposure to market risk. However, the non-linear regression of simulated responses on risk factors poses a challenge in this procedure. This article presents a novel approach to address this issue by employing an a-priori segmentation of responses. Using a K-means algorithm, we identify clusters of responses that are then locally regressed on their corresponding risk factors. The global regression function is obtained by combining the local models with logistic regression. We demonstrate the effectiveness of the proposed local least squares Monte Carlo method through two case studies. The first case study investigates butterfly and bull trap options within a Heston stochastic volatility model, while the second case study examines the exposure to risks in a participating life insurance scenario.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:53:y:2023:i:3:p:489-514_1
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().