Multi-population mortality modelling: a Bayesian hierarchical approach
Jianjie Shi,
Yanlin Shi,
Pengjie Wang and
Dan Zhu
ASTIN Bulletin, 2024, vol. 54, issue 1, 46-74
Abstract:
Modelling mortality co-movements for multiple populations has significant implications for mortality/longevity risk management. This paper assumes that multiple populations are heterogeneous sub-populations randomly drawn from a hypothetical super-population. Those heterogeneous sub-populations may exhibit various patterns of mortality dynamics across different age groups. We propose a hierarchical structure of these age patterns to ensure the model stability and use a Vector Error Correction Model (VECM) to fit the co-movements over time. Especially, a structural analysis based on the VECM is implemented to investigate potential interdependence among mortality dynamics of the examined populations. An efficient Bayesian Markov Chain Monte-Carlo method is also developed to estimate the unknown parameters to address the computational complexity. Our empirical application to the mortality data collected for the Group of Seven nations demonstrates the efficacy of our approach.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:54:y:2024:i:1:p:46-74_3
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().