Optimal performance of a tontine overlay subject to withdrawal constraints
Peter A. Forsyth,
Kenneth R. Vetzal and
Graham Westmacott
ASTIN Bulletin, 2024, vol. 54, issue 1, 94-128
Abstract:
We consider the holder of an individual tontine retirement account, with maximum and minimum withdrawal amounts (per year) specified. The tontine account holder initiates the account at age 65 and earns mortality credits while alive, but forfeits all wealth in the account upon death. The holder wants to maximize total withdrawals and minimize expected shortfall at the end of the retirement horizon of 30 years (i.e., it is assumed that the holder survives to age 95). The holder controls the amount withdrawn each year and the fraction of the retirement portfolio invested in stocks and bonds. The optimal controls are determined based on a parametric model fitted to almost a century of market data. The optimal control algorithm is based on dynamic programming and the solution of a partial integro differential equation (PIDE) using Fourier methods. The optimal strategy (based on the parametric model) is tested out of sample using stationary block bootstrap resampling of the historical data. In terms of an expected total withdrawal, expected shortfall (EW-ES) efficient frontier, the tontine overlay dramatically outperforms an optimal strategy (without the tontine overlay), which in turn outperforms a constant weight strategy with withdrawals based on the ubiquitous four per cent rule.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:54:y:2024:i:1:p:94-128_5
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().