Signature-based validation of real-world economic scenarios
Hervé Andrès,
Alexandre Boumezoued and
Benjamin Jourdain
ASTIN Bulletin, 2024, vol. 54, issue 2, 410-440
Abstract:
Motivated by insurance applications, we propose a new approach for the validation of real-world economic scenarios. This approach is based on the statistical test developed by Chevyrev and Oberhauser ((2022) Journal of Machine Learning Research, 23(176), 1–42.) and relies on the notions of signature and maximum mean distance. This test allows to check whether two samples of stochastic processes paths come from the same distribution. Our contribution is to apply this test to a variety of stochastic processes exhibiting different pathwise properties (Hölder regularity, autocorrelation, and regime switches) and which are relevant for the modelling of stock prices and stock volatility as well as of inflation in view of actuarial applications.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:54:y:2024:i:2:p:410-440_9
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().