EconPapers    
Economics at your fingertips  
 

Signature-based validation of real-world economic scenarios

Hervé Andrès, Alexandre Boumezoued and Benjamin Jourdain

ASTIN Bulletin, 2024, vol. 54, issue 2, 410-440

Abstract: Motivated by insurance applications, we propose a new approach for the validation of real-world economic scenarios. This approach is based on the statistical test developed by Chevyrev and Oberhauser ((2022) Journal of Machine Learning Research, 23(176), 1–42.) and relies on the notions of signature and maximum mean distance. This test allows to check whether two samples of stochastic processes paths come from the same distribution. Our contribution is to apply this test to a variety of stochastic processes exhibiting different pathwise properties (Hölder regularity, autocorrelation, and regime switches) and which are relevant for the modelling of stock prices and stock volatility as well as of inflation in view of actuarial applications.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:54:y:2024:i:2:p:410-440_9

Access Statistics for this article

More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:astinb:v:54:y:2024:i:2:p:410-440_9