Joint mortality models based on subordinated linear hypercubes
Domenico De Giovanni,
Marco Pirra and
Fabio Viviano
ASTIN Bulletin, 2025, vol. 55, issue 2, 332-351
Abstract:
We use recent advances in polynomial diffusion processes to develop a continuous-time joint mortality model for the actuarial valuation and risk analysis of life insurance liabilities. The model considers the stochastic nature of future mortality improvements and introduces a common subordinator for the marginal survival processes, resulting in a nontrivial dependence structure between the survival of pairs of individuals. Polynomial diffusion processes can be used to derive closed-form formulae for standard actuarial quantities. The model fits well with a classic dataset provided by a Canadian insurer and can be used to evaluate products issued to multiple lives, as shown through numerical applications.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:55:y:2025:i:2:p:332-351_6
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().