Improving healthcare cost prediction for chronic disease through covariate clustering and subgroup analysis methods
Zhengxiao Li,
Yifan Huang and
Yang Cao
ASTIN Bulletin, 2025, vol. 55, issue 2, 374-394
Abstract:
Predicting healthcare costs for chronic diseases is challenging for actuaries, as these costs depend not only on traditional risk factors but also on patients’ self-perception and treatment behaviors. To address this complexity and the unobserved heterogeneity in cost data, we propose a dual-structured learning statistical framework that integrates covariate clustering into finite mixture of generalized linear models, effectively handling high-dimensional, sparse, and highly correlated covariates while capturing their effects on specific subgroups. Specifically, this framework is realized by imposing a penalty on the prior similarities among covariates, and we further propose an expectation-maximization-alternating direction method of multipliers (EM-ADMM) algorithm to address the complex optimization problem by combining EM with the ADMM. This paper validates the stability and effectiveness of the framework through simulation and empirical studies. The results show that our framework can leverage shared information among high-dimensional covariates to enhance fitting and prediction accuracy, while covariate clustering can also uncover the covariates’ network relationships, providing valuable insights into diabetic patients’ self-perception data.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:55:y:2025:i:2:p:374-394_8
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().