On a transformation of the weighted compound Poisson process
Hans Bühlmann and
Roberto Buzzi
ASTIN Bulletin, 1971, vol. 6, issue 1, 42-46
Abstract:
We are using the following terminology—essentially following Feller:a) Compound Poisson VariableThis is a random variable where X1, X2, … Xn, … independent, identically distributed (X0 = o) and N a Poisson counting variablehence(common) distribution function of the Xj with j ≠ 0 or in the language of characteristic functionsb) Weighted Compound Poisson VariableThis is a random variable Z obtained from a class of Compound Poisson Variables by weighting over λ with a weight function S(λ)henceor in the language of characteristic functionsLet [Z(t); t ≥ o] be a homogeneous Weighted Compound Poisson Process. The characteristic function at the time epoch t reads thenIt is most remarkable that in many instances φt(u) can be represented as a (non weighted) Compound Poisson Variable. Our main result is given as a theorem.
Date: 1971
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:6:y:1971:i:01:p:42-46_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().