EconPapers    
Economics at your fingertips  
 

On a transformation of the weighted compound Poisson process

Hans Bühlmann and Roberto Buzzi

ASTIN Bulletin, 1971, vol. 6, issue 1, 42-46

Abstract: We are using the following terminology—essentially following Feller:a) Compound Poisson VariableThis is a random variable where X1, X2, … Xn, … independent, identically distributed (X0 = o) and N a Poisson counting variablehence(common) distribution function of the Xj with j ≠ 0 or in the language of characteristic functionsb) Weighted Compound Poisson VariableThis is a random variable Z obtained from a class of Compound Poisson Variables by weighting over λ with a weight function S(λ)henceor in the language of characteristic functionsLet [Z(t); t ≥ o] be a homogeneous Weighted Compound Poisson Process. The characteristic function at the time epoch t reads thenIt is most remarkable that in many instances φt(u) can be represented as a (non weighted) Compound Poisson Variable. Our main result is given as a theorem.

Date: 1971
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:6:y:1971:i:01:p:42-46_00

Access Statistics for this article

More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:astinb:v:6:y:1971:i:01:p:42-46_00