A remark on Wiener process approximation of risk processes
Jan Grandell
ASTIN Bulletin, 1972, vol. 7, issue 1, 100-101
Abstract:
In Bohman the following model is considered. Our notation follows Bohman.Let Z1, Z2, … be a sequence of independent random variables with distribution function F and put Put and define X byX = inf{n; Sn > U, Sk ≤ U for k = 1, …, n − 1}.Bohman shows that if U → ∞ in such a way that U/σ → ∞ and then where G(α, x) is the distribution function for the time when a Wiener process X(t) with EX(t) = αt and Var X(t) = t first crosses the level 1.Let N be an integer, which in a certain sense corresponds to “time”, and consider P(X ≤ N). This is thus the probability of ruin before the N:th claim.
Date: 1972
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:astinb:v:7:y:1972:i:01:p:100-101_00
Access Statistics for this article
More articles in ASTIN Bulletin from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().