A machine learning perspective on responsible gambling
Arman Hassanniakalager and
Philip W.S. Newall
Behavioural Public Policy, 2022, vol. 6, issue 2, 237-260
Abstract:
Gamblers are frequently reminded to ‘gamble responsibly’. But these qualitative reminders come with no quantitative information for gamblers to judge relative product risk in skill-based gambling forms. By comparison, consumers purchasing alcohol are informed of product strength by alcohol by volume percentage (ABV%) or similar labels. This paper uses mixed logistic regression machine learning to uncover the potential variation in soccer betting outcomes. This paper uses data from four bet types and eight seasons of English Premier League soccer, ending in 2018. Outcomes across each bet type were compared using three betting strategies: the most-skilled prediction, a random strategy and the least-skilled prediction. There was a large spread in betting outcomes, with, for example, the per-bet average loss varying by a factor of 54 (from 1.1% to 58.9%). Gamblers’ losses were positively correlated with the observable betting odds across all bets, indicating that betting odds are one salient feature that could be used to inform gamblers about product risk. Such large differences in product risk are relevant to the promotion of responsible gambling.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:bpubpo:v:6:y:2022:i:2:p:237-260_4
Access Statistics for this article
More articles in Behavioural Public Policy from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().