On contemporary mortality models for actuarial use II: principles
Angus S. Macdonald and
Stephen J. Richards
British Actuarial Journal, 2025, vol. 30, -
Abstract:
We reprise some common statistical models for actuarial mortality analysis using grouped counts. We then discuss the benefits of building mortality models from the most elementary items. This has two facets. First, models are better based on the mortality of individuals, rather than groups. Second, models are better defined in continuous time, rather than over fixed intervals like a year. We show how Poisson-like likelihoods at the “macro” level are built up by product integration of sequences of infinitesimal Bernoulli trials at the “micro” level. Observed data is represented through a stochastic mortality hazard rate, and counting processes provide the natural notation for left-truncated and right-censored actuarial data, individual or age-grouped. Together these explain the “pseudo-Poisson” behaviour of survival model likelihoods.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:bracjl:v:30:y:2025:i::p:-_19
Access Statistics for this article
More articles in British Actuarial Journal from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().