Autoregressive Errors in Singular Systems of Equations
Phoebus J. Dhrymes
Econometric Theory, 1994, vol. 10, issue 2, 254-285
Abstract:
We consider a system of m general linear models, where the system error vector has a singular covariance matrix owing to various “adding up” requirements and, in addition, the error vector obeys an autoregressive scheme. The paper reformulates the problem considered earlier by Berndt and Savin [8] (BS), as well as others before them; the solution, thus obtained, is far simpler, being the natural extension of a restricted least-squares-like procedure to a system of equations. This reformulation enables us to treat all parameters symmetrically, and discloses a set of conditions which is different from, and much less stringent than, that exhibited in the framework provided by BS. Finally, various extensions are discussed to (a) the case where the errors obey a stable autoregression scheme of order r; (b) the case where the errors obey a moving average scheme of order r; (c) the case of “dynamic” vector distributed lag models, that is, the case where the model is formulated as autoregressive (in the dependent variables), and moving average (in the explanatory variables), and the errors are specified to be i.i.d.
Date: 1994
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:10:y:1994:i:02:p:254-285_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().